Serveur d'exploration sur les maladies des plantes grimpantes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Evidence suggesting interactions between immunodominant membrane protein Imp of Flavescence dorée phytoplasma and protein extracts from distantly related insect species.

Identifieur interne : 000174 ( Main/Exploration ); précédent : 000173; suivant : 000175

Evidence suggesting interactions between immunodominant membrane protein Imp of Flavescence dorée phytoplasma and protein extracts from distantly related insect species.

Auteurs : V. Trivellone [États-Unis, Italie] ; M. Ripamonti [Italie] ; E. Angelini [Italie] ; L. Filippin [Italie] ; M. Rossi [Italie] ; C. Marzachí [Italie] ; L. Galetto [Italie]

Source :

RBID : pubmed:31509633

Descripteurs français

English descriptors

Abstract

AIMS

In this study, binding between the immunodominant membrane protein Imp of the 16SrV-D phytoplasma associated with Flavescence dorée disease (FD-Dp) and insect proteins of vectors and non-vectors of FD-Dp was tested.

METHODS AND RESULTS

Six Auchenorrhyncha species, from distantly related groups were selected: Scaphoideus titanus, Euscelidius variegatus, Macrosteles quadripunctulatus, Zyginidia pullula (Cicadomorpha), Ricania speculum and Metcalfa pruinosa (Fulgoromorpha). The vector status of each species was retrieved from the literature or determined by transmission trials in this study. A His-tagged partial Imp protein and a rabbit polyclonal antibody were synthesized and used for Western and Far-Western dot Blot (FWdB) experiments. Total native and membrane proteins (MP) were extracted from entire bodies and organs (gut and salivary glands) of each insect species. FWdB showed decreasing interaction intensities of Imp fusion protein with total proteins from entire bodies of S. titanus, E. variegatus (competent vectors) and M. quadripunctulatus (non-vector), while no interaction signal was detected with the other three species (non-vectors). A strong signal detected upon interaction of FD-D Imp and MP from guts of closely related insects supports the role of this organ as the first barrier to ensure successful transmission.

CONCLUSIONS

Our results showed that specific Imp binding, correlated with vector status, is involved in interactions between FD-Dp and insect proteins.

SIGNIFICANCE AND IMPACT OF THE STUDY

Integrating knowledge on host-pathogen protein-protein interactions and on insect phylogeny would help to identify the actual range of vectors of phytoplasma strains of economic importance.


DOI: 10.1111/jam.14445
PubMed: 31509633


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Evidence suggesting interactions between immunodominant membrane protein Imp of Flavescence dorée phytoplasma and protein extracts from distantly related insect species.</title>
<author>
<name sortKey="Trivellone, V" sort="Trivellone, V" uniqKey="Trivellone V" first="V" last="Trivellone">V. Trivellone</name>
<affiliation wicri:level="2">
<nlm:affiliation>Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, IL, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, IL</wicri:regionArea>
<placeName>
<region type="state">Illinois</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Council for Agricultural Research and Economics (CREA), Research Centre for Viticulture and Enology, Conegliano, TV, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Council for Agricultural Research and Economics (CREA), Research Centre for Viticulture and Enology, Conegliano, TV</wicri:regionArea>
<wicri:noRegion>TV</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ripamonti, M" sort="Ripamonti, M" uniqKey="Ripamonti M" first="M" last="Ripamonti">M. Ripamonti</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute for Sustainable Plant Protection, National Research Council, Turin, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Institute for Sustainable Plant Protection, National Research Council, Turin</wicri:regionArea>
<placeName>
<settlement type="city">Turin</settlement>
<region type="région" nuts="2">Piémont</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Dipartimento di Scienze Agrarie, Forestali ed Alimentari DISAFA, Università degli Studi di Torino, Grugliasco, TO, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Dipartimento di Scienze Agrarie, Forestali ed Alimentari DISAFA, Università degli Studi di Torino, Grugliasco, TO</wicri:regionArea>
<wicri:noRegion>TO</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Angelini, E" sort="Angelini, E" uniqKey="Angelini E" first="E" last="Angelini">E. Angelini</name>
<affiliation wicri:level="1">
<nlm:affiliation>Council for Agricultural Research and Economics (CREA), Research Centre for Viticulture and Enology, Conegliano, TV, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Council for Agricultural Research and Economics (CREA), Research Centre for Viticulture and Enology, Conegliano, TV</wicri:regionArea>
<wicri:noRegion>TV</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Filippin, L" sort="Filippin, L" uniqKey="Filippin L" first="L" last="Filippin">L. Filippin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Council for Agricultural Research and Economics (CREA), Research Centre for Viticulture and Enology, Conegliano, TV, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Council for Agricultural Research and Economics (CREA), Research Centre for Viticulture and Enology, Conegliano, TV</wicri:regionArea>
<wicri:noRegion>TV</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rossi, M" sort="Rossi, M" uniqKey="Rossi M" first="M" last="Rossi">M. Rossi</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute for Sustainable Plant Protection, National Research Council, Turin, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Institute for Sustainable Plant Protection, National Research Council, Turin</wicri:regionArea>
<placeName>
<settlement type="city">Turin</settlement>
<region type="région" nuts="2">Piémont</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Marzachi, C" sort="Marzachi, C" uniqKey="Marzachi C" first="C" last="Marzachí">C. Marzachí</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute for Sustainable Plant Protection, National Research Council, Turin, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Institute for Sustainable Plant Protection, National Research Council, Turin</wicri:regionArea>
<placeName>
<settlement type="city">Turin</settlement>
<region type="région" nuts="2">Piémont</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Galetto, L" sort="Galetto, L" uniqKey="Galetto L" first="L" last="Galetto">L. Galetto</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute for Sustainable Plant Protection, National Research Council, Turin, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Institute for Sustainable Plant Protection, National Research Council, Turin</wicri:regionArea>
<placeName>
<settlement type="city">Turin</settlement>
<region type="région" nuts="2">Piémont</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31509633</idno>
<idno type="pmid">31509633</idno>
<idno type="doi">10.1111/jam.14445</idno>
<idno type="wicri:Area/Main/Corpus">000139</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000139</idno>
<idno type="wicri:Area/Main/Curation">000139</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000139</idno>
<idno type="wicri:Area/Main/Exploration">000139</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Evidence suggesting interactions between immunodominant membrane protein Imp of Flavescence dorée phytoplasma and protein extracts from distantly related insect species.</title>
<author>
<name sortKey="Trivellone, V" sort="Trivellone, V" uniqKey="Trivellone V" first="V" last="Trivellone">V. Trivellone</name>
<affiliation wicri:level="2">
<nlm:affiliation>Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, IL, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, IL</wicri:regionArea>
<placeName>
<region type="state">Illinois</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Council for Agricultural Research and Economics (CREA), Research Centre for Viticulture and Enology, Conegliano, TV, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Council for Agricultural Research and Economics (CREA), Research Centre for Viticulture and Enology, Conegliano, TV</wicri:regionArea>
<wicri:noRegion>TV</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ripamonti, M" sort="Ripamonti, M" uniqKey="Ripamonti M" first="M" last="Ripamonti">M. Ripamonti</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute for Sustainable Plant Protection, National Research Council, Turin, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Institute for Sustainable Plant Protection, National Research Council, Turin</wicri:regionArea>
<placeName>
<settlement type="city">Turin</settlement>
<region type="région" nuts="2">Piémont</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Dipartimento di Scienze Agrarie, Forestali ed Alimentari DISAFA, Università degli Studi di Torino, Grugliasco, TO, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Dipartimento di Scienze Agrarie, Forestali ed Alimentari DISAFA, Università degli Studi di Torino, Grugliasco, TO</wicri:regionArea>
<wicri:noRegion>TO</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Angelini, E" sort="Angelini, E" uniqKey="Angelini E" first="E" last="Angelini">E. Angelini</name>
<affiliation wicri:level="1">
<nlm:affiliation>Council for Agricultural Research and Economics (CREA), Research Centre for Viticulture and Enology, Conegliano, TV, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Council for Agricultural Research and Economics (CREA), Research Centre for Viticulture and Enology, Conegliano, TV</wicri:regionArea>
<wicri:noRegion>TV</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Filippin, L" sort="Filippin, L" uniqKey="Filippin L" first="L" last="Filippin">L. Filippin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Council for Agricultural Research and Economics (CREA), Research Centre for Viticulture and Enology, Conegliano, TV, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Council for Agricultural Research and Economics (CREA), Research Centre for Viticulture and Enology, Conegliano, TV</wicri:regionArea>
<wicri:noRegion>TV</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rossi, M" sort="Rossi, M" uniqKey="Rossi M" first="M" last="Rossi">M. Rossi</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute for Sustainable Plant Protection, National Research Council, Turin, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Institute for Sustainable Plant Protection, National Research Council, Turin</wicri:regionArea>
<placeName>
<settlement type="city">Turin</settlement>
<region type="région" nuts="2">Piémont</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Marzachi, C" sort="Marzachi, C" uniqKey="Marzachi C" first="C" last="Marzachí">C. Marzachí</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute for Sustainable Plant Protection, National Research Council, Turin, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Institute for Sustainable Plant Protection, National Research Council, Turin</wicri:regionArea>
<placeName>
<settlement type="city">Turin</settlement>
<region type="région" nuts="2">Piémont</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Galetto, L" sort="Galetto, L" uniqKey="Galetto L" first="L" last="Galetto">L. Galetto</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute for Sustainable Plant Protection, National Research Council, Turin, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Institute for Sustainable Plant Protection, National Research Council, Turin</wicri:regionArea>
<placeName>
<settlement type="city">Turin</settlement>
<region type="région" nuts="2">Piémont</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of applied microbiology</title>
<idno type="eISSN">1365-2672</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Bacterial Proteins (metabolism)</term>
<term>Hemiptera (chemistry)</term>
<term>Hemiptera (classification)</term>
<term>Hemiptera (microbiology)</term>
<term>Insect Proteins (metabolism)</term>
<term>Insect Vectors (chemistry)</term>
<term>Insect Vectors (classification)</term>
<term>Insect Vectors (microbiology)</term>
<term>Membrane Proteins (metabolism)</term>
<term>Phylogeny (MeSH)</term>
<term>Phytoplasma (chemistry)</term>
<term>Phytoplasma (physiology)</term>
<term>Plant Diseases (microbiology)</term>
<term>Protein Binding (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Hemiptera (classification)</term>
<term>Hemiptera (composition chimique)</term>
<term>Hemiptera (microbiologie)</term>
<term>Liaison aux protéines (MeSH)</term>
<term>Maladies des plantes (microbiologie)</term>
<term>Phylogenèse (MeSH)</term>
<term>Phytoplasma (composition chimique)</term>
<term>Phytoplasma (physiologie)</term>
<term>Protéines bactériennes (métabolisme)</term>
<term>Protéines d'insecte (métabolisme)</term>
<term>Protéines membranaires (métabolisme)</term>
<term>Vecteurs insectes (classification)</term>
<term>Vecteurs insectes (composition chimique)</term>
<term>Vecteurs insectes (microbiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Insect Proteins</term>
<term>Membrane Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Hemiptera</term>
<term>Insect Vectors</term>
<term>Phytoplasma</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Hemiptera</term>
<term>Insect Vectors</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Hemiptera</term>
<term>Phytoplasma</term>
<term>Vecteurs insectes</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Hemiptera</term>
<term>Maladies des plantes</term>
<term>Vecteurs insectes</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Hemiptera</term>
<term>Insect Vectors</term>
<term>Plant Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Protéines bactériennes</term>
<term>Protéines d'insecte</term>
<term>Protéines membranaires</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Phytoplasma</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Phytoplasma</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Phylogeny</term>
<term>Protein Binding</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Liaison aux protéines</term>
<term>Phylogenèse</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>AIMS</b>
</p>
<p>In this study, binding between the immunodominant membrane protein Imp of the 16SrV-D phytoplasma associated with Flavescence dorée disease (FD-Dp) and insect proteins of vectors and non-vectors of FD-Dp was tested.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>METHODS AND RESULTS</b>
</p>
<p>Six Auchenorrhyncha species, from distantly related groups were selected: Scaphoideus titanus, Euscelidius variegatus, Macrosteles quadripunctulatus, Zyginidia pullula (Cicadomorpha), Ricania speculum and Metcalfa pruinosa (Fulgoromorpha). The vector status of each species was retrieved from the literature or determined by transmission trials in this study. A His-tagged partial Imp protein and a rabbit polyclonal antibody were synthesized and used for Western and Far-Western dot Blot (FWdB) experiments. Total native and membrane proteins (MP) were extracted from entire bodies and organs (gut and salivary glands) of each insect species. FWdB showed decreasing interaction intensities of Imp fusion protein with total proteins from entire bodies of S. titanus, E. variegatus (competent vectors) and M. quadripunctulatus (non-vector), while no interaction signal was detected with the other three species (non-vectors). A strong signal detected upon interaction of FD-D Imp and MP from guts of closely related insects supports the role of this organ as the first barrier to ensure successful transmission.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>Our results showed that specific Imp binding, correlated with vector status, is involved in interactions between FD-Dp and insect proteins.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>SIGNIFICANCE AND IMPACT OF THE STUDY</b>
</p>
<p>Integrating knowledge on host-pathogen protein-protein interactions and on insect phylogeny would help to identify the actual range of vectors of phytoplasma strains of economic importance.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">31509633</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>01</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>01</Month>
<Day>27</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1365-2672</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>127</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2019</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Journal of applied microbiology</Title>
<ISOAbbreviation>J Appl Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Evidence suggesting interactions between immunodominant membrane protein Imp of Flavescence dorée phytoplasma and protein extracts from distantly related insect species.</ArticleTitle>
<Pagination>
<MedlinePgn>1801-1813</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/jam.14445</ELocationID>
<Abstract>
<AbstractText Label="AIMS" NlmCategory="OBJECTIVE">In this study, binding between the immunodominant membrane protein Imp of the 16SrV-D phytoplasma associated with Flavescence dorée disease (FD-Dp) and insect proteins of vectors and non-vectors of FD-Dp was tested.</AbstractText>
<AbstractText Label="METHODS AND RESULTS" NlmCategory="RESULTS">Six Auchenorrhyncha species, from distantly related groups were selected: Scaphoideus titanus, Euscelidius variegatus, Macrosteles quadripunctulatus, Zyginidia pullula (Cicadomorpha), Ricania speculum and Metcalfa pruinosa (Fulgoromorpha). The vector status of each species was retrieved from the literature or determined by transmission trials in this study. A His-tagged partial Imp protein and a rabbit polyclonal antibody were synthesized and used for Western and Far-Western dot Blot (FWdB) experiments. Total native and membrane proteins (MP) were extracted from entire bodies and organs (gut and salivary glands) of each insect species. FWdB showed decreasing interaction intensities of Imp fusion protein with total proteins from entire bodies of S. titanus, E. variegatus (competent vectors) and M. quadripunctulatus (non-vector), while no interaction signal was detected with the other three species (non-vectors). A strong signal detected upon interaction of FD-D Imp and MP from guts of closely related insects supports the role of this organ as the first barrier to ensure successful transmission.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Our results showed that specific Imp binding, correlated with vector status, is involved in interactions between FD-Dp and insect proteins.</AbstractText>
<AbstractText Label="SIGNIFICANCE AND IMPACT OF THE STUDY" NlmCategory="CONCLUSIONS">Integrating knowledge on host-pathogen protein-protein interactions and on insect phylogeny would help to identify the actual range of vectors of phytoplasma strains of economic importance.</AbstractText>
<CopyrightInformation>© 2019 The Society for Applied Microbiology.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Trivellone</LastName>
<ForeName>V</ForeName>
<Initials>V</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0003-1415-4097</Identifier>
<AffiliationInfo>
<Affiliation>Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, IL, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Council for Agricultural Research and Economics (CREA), Research Centre for Viticulture and Enology, Conegliano, TV, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ripamonti</LastName>
<ForeName>M</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Institute for Sustainable Plant Protection, National Research Council, Turin, Italy.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Dipartimento di Scienze Agrarie, Forestali ed Alimentari DISAFA, Università degli Studi di Torino, Grugliasco, TO, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Angelini</LastName>
<ForeName>E</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Council for Agricultural Research and Economics (CREA), Research Centre for Viticulture and Enology, Conegliano, TV, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Filippin</LastName>
<ForeName>L</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Council for Agricultural Research and Economics (CREA), Research Centre for Viticulture and Enology, Conegliano, TV, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rossi</LastName>
<ForeName>M</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Institute for Sustainable Plant Protection, National Research Council, Turin, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Marzachí</LastName>
<ForeName>C</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Institute for Sustainable Plant Protection, National Research Council, Turin, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Galetto</LastName>
<ForeName>L</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Institute for Sustainable Plant Protection, National Research Council, Turin, Italy.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P2NEP3_168526 / 3</GrantID>
<Agency>Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>2018-0678</GrantID>
<Agency>Fondazione Cassa di Risparmio di Torino, FOotSTEP</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>727459</GrantID>
<Agency>European Union's Horizon 2020, TROPICSAFE</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>10</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Appl Microbiol</MedlineTA>
<NlmUniqueID>9706280</NlmUniqueID>
<ISSNLinking>1364-5072</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D019476">Insect Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008565">Membrane Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006430" MajorTopicYN="N">Hemiptera</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019476" MajorTopicYN="N">Insect Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007303" MajorTopicYN="N">Insect Vectors</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008565" MajorTopicYN="N">Membrane Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045582" MajorTopicYN="N">Phytoplasma</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Imp</Keyword>
<Keyword MajorTopicYN="N">grapevine yellows</Keyword>
<Keyword MajorTopicYN="N">leafhopper</Keyword>
<Keyword MajorTopicYN="N">planthopper</Keyword>
<Keyword MajorTopicYN="N">transmission efficiency</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>05</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>09</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>09</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>9</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>1</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>9</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31509633</ArticleId>
<ArticleId IdType="doi">10.1111/jam.14445</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>References</Title>
<Reference>
<Citation>Abbà, S., Galetto, L., Carle, P., Carrère, S., Delledonne, M., Foissac, X., Palmano, S., Veratti, F. et al. (2014) RNA-Seq profile of flavescence dorée phytoplasma in grapevine. BMC Genom 15, 1088.</Citation>
</Reference>
<Reference>
<Citation>Alegria-Schaffer, A., Lodge, A. and Vattem, K. (2009) Performing and optimizing Western blots with an emphasis on chemiluminescent detection. Methods Enzymol, 463, 573-599.</Citation>
</Reference>
<Reference>
<Citation>Angelini, E., Clair, D., Borgo, M., Bertaccini, A. and Boudon-Padieu, E. (2001) Flavescence dorée in France and Italy-Occurrence of closely related phytoplasma isolates and their near relationships to Palatinate grapevine yellows and an alder yellows phytoplasma. Vitis 40(2), 79-86.</Citation>
</Reference>
<Reference>
<Citation>Arnaud, G., Malembic-Maher, S., Salar, P., Bonnet, P., Maixner, M., Marcone, C., Boudon-Padieu, E. and Foissac, X. (2007) Multilocus sequence typing confirms the close genetic interrelatedness of three distinct flavescence dorée phytoplasma strain clusters and group16SrV phytoplasmas infecting grapevine and alder in Europe. Appl Environ Microbiol 73, 4001-4010.</Citation>
</Reference>
<Reference>
<Citation>Arricau-Bouvery, N., Duret, S., Dubrana, M.P., Batailler, B., Desqué, D., Béven, L., Danet, J.L., Monticone, M. et al. (2018) Variable membrane protein A of flavescence dorée phytoplasma binds the midgut perimicrovillar membrane of Euscelidius variegatus and promotes adhesion to its epithelial cells. Appl Environ Microbiol 84(8), e02487-17.</Citation>
</Reference>
<Reference>
<Citation>Backus, E.A. (1994) History, development, and applications of the AC electronic monitoring system for insect feeding. Lanham, MD: Entomological Society of America, pp. 1-51.</Citation>
</Reference>
<Reference>
<Citation>Backus, E.A., Serrano, M.S. and Ranger, C.M. (2005) Mechanisms of hopperburn: an overview of insect taxonomy, behavior, and physiology. Annu Rev Entomol 50, 125-151.</Citation>
</Reference>
<Reference>
<Citation>Bertaccini, A., Duduk, B., Paltrinieri, S. and Contaldo, N. (2014) Phytoplasmas and phytoplasma diseases: a severe threat to agriculture. Am J Plant Sci 5, 1763-1788.</Citation>
</Reference>
<Reference>
<Citation>Boonrod, K., Munteanu, B., Jarausch, B., Jarausch, W. and Krczal, G. (2012) An immunodominant membrane protein (Imp) of ‘Candidatus Phytoplasma mali’binds to plant actin. Mol Plant Microbe Interact 25, 889-895.</Citation>
</Reference>
<Reference>
<Citation>Bosco, D., Galetto, L., Leoncini, P., Saracco, P., Raccah, B. and Marzachì, C. (2007) Interrelationships between “Candidatus Phytoplasma asteris” and its leafhopper vectors (Homoptera: Cicadellidae). J Econ Entomol 100, 1504-1511.</Citation>
</Reference>
<Reference>
<Citation>Bressan, A., Clair, D., Sémétey, O. and Boudon-Padieu, E. (2006) Insect injection and artificial feeding bioassays to test the vector specificity of Flavescence dorée phytoplasma. Phytopathology 96(7), 790-796.</Citation>
</Reference>
<Reference>
<Citation>Candiano, G., Bruschi, M., Musante, L., Santucci, L., Ghiggeri, G.M., Carnemolla, B., Orecchia, P., Zardi, L. et al. (2004) Blue silver: A very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis 25, 1327-1333.</Citation>
</Reference>
<Reference>
<Citation>Caudwell, A., Kuszla, C., Larrue, J. and Bachelier, J.C. (1972) Transmission de la flavescence dorée de la feve a la feve par des cicadelles des genres Euscelis et Euscelidius: Intervention possible de ces insectes dans l'epidemiologie du bois noir en Bourgogne. Annales de Phytopathologie n° Horse série 181-189.</Citation>
</Reference>
<Reference>
<Citation>Clair, D., Larrue, J., Boudon-Padieu, E. and Lozzia, C.. (2001) Evaluation of vectoring ability of phytoplasmas by Metcalfa pruinosa Say (Homoptera: Flatidae) recently introduced in Europe. In Proceedings of the IOBC-WPRS working group "integrated control in viticulture" at Ponte de Lima, Portugal, March 2-7 2001. Bulletin-OILB-SROP 24, 195-197.</Citation>
</Reference>
<Reference>
<Citation>Daugherty, M.P., Bosco, D. and Almeida, R.P.P. (2009) Temperature mediates vector transmission efficiency: inoculum supply and plant infection dynamics. Ann Appl Biol 155, 361-369.</Citation>
</Reference>
<Reference>
<Citation>Dietrich, C.H., Allen, J.M., Lemmon, A.R., Lemmon, E.M., Takiya, D.M., Evangelista, O., Walden, K.K., Grady, P.G. et al. (2017) Anchored hybrid enrichment-based phylogenomics of leafhoppers and treehoppers (Hemiptera: Cicadomorpha: Membracoidea). Insect Syst Divers 1, 57-72.</Citation>
</Reference>
<Reference>
<Citation>Drobnjakovic, T., Peric, P., Marcic, D., Picciau, L., Alma, A., Mitrovic, J., Duduk, B. and Bertaccini, A. (2010) Leafhoppers and cixiids in phytoplasma-infected carrot fields: species composition and potential phytoplasma vectors. Pestic Phytomed 25(4), 311-318.</Citation>
</Reference>
<Reference>
<Citation>EFSA Panel on Plant Health (PLH) (2014) Scientific Opinion on pest categorisation of Grapevine Flavescence dorée. EFSA Journal 12, 3851, 31 pp. https://doi.org/10.2903/j.efsa.2014.3851.</Citation>
</Reference>
<Reference>
<Citation>Fabre, A., Danet, J.-L. and Foissac, X. (2011) The “stolbur” phytoplasma antigenic membrane protein gene stamp is submitted to diversifying positive selection. Gene 472, 37-41.</Citation>
</Reference>
<Reference>
<Citation>Filippin, L., Jović, J., Cvrković, T., Forte, V., Clair, D., Toševski, I., Boudon-Padieu, E., Borgo, M. et al. (2009) Molecular characteristics of phytoplasmas associated with Flavescence dorée in clematis and grapevine and preliminary results on the role of Dictyophara europaea as a vector. Plant Pathol 58, 826-837.</Citation>
</Reference>
<Reference>
<Citation>Frago, E., Dicke, M. and Godfray, H.C.J. (2012) Insect symbionts as hidden players in insect-plant interactions. Trends Ecol Evol 27, 705-711.</Citation>
</Reference>
<Reference>
<Citation>Frazier, N.W. (1965) Xylem viruses and their insect vectors. In Proceedings International Conference on Virus and Vector on Perennial Hosts, with Special Reference to Vitis ed. Hewitt, W.B. pp. 91-99. Davis: CA. University of California Press. 6-10 (September 1965), Davies.</Citation>
</Reference>
<Reference>
<Citation>Galetto, L., Bosco, D., Balestrini, R., Genre, A., Fletcher, J. and Marzachì, C. (2011a) The major antigenic membrane protein of “Candidatus Phytoplasma asteris” selectively interacts with ATP synthase and actin of leafhopper vectors. PLoS ONE 6, e22571.</Citation>
</Reference>
<Reference>
<Citation>Galetto, L., Marzachì, C., Demichelis, S. and Bosco, D. (2011b) Host plant determines the phytoplasma transmission competence of Empoasca decipiens (Hemiptera: Cicadellidae). J Econ Entomol 104, 360-366.</Citation>
</Reference>
<Reference>
<Citation>Galetto, L., Pegoraro, M., Marzachì, C., Rossi, E., Lucchi, A. and Bosco, D. (2019) Potential role of the alien planthopper Ricania speculum as vector of Flavescence dorée phytoplasma. Eur J Plant Pathol 154(4), 1103-1110. https://doi.org/10.1007/s10658-019-01731-0.</Citation>
</Reference>
<Reference>
<Citation>Guadagnini, M., Mori, N., Alberghini, S., Carturan, E., Girolami, V. and Bertaccini, A. (2000) Molecular evidence of phytoplasma transmission to grapevine by Metcalfa pruinosa (Say) in Italy. In 13th Meeting of the International Council for the study of virus-like diseases of the Grapevine (ICVG), pp. 99-100. March 12-18, Adelaide, Australia.</Citation>
</Reference>
<Reference>
<Citation>Hansen, A.K. and Moran, N.A. (2014) The impact of microbial symbionts on host plant utilization by herbivorous insects. Mol Ecol 23, 1473-1496.</Citation>
</Reference>
<Reference>
<Citation>Harrison, N.A., Davis, R.E., Oropeza, C., Helmick, E.E., Narvaez, M., Eden-Green, S., Dollet, M., Dickinson, M. et al. (2014) 'Candidatus phytoplasma palmicola’: a novel taxon associated with a lethal yellowing-type disease (LYD) of coconut (Cocos nucifera L.) in Mozambique. Int J Syst Evol Microbiol 64 6, 1890-1899.</Citation>
</Reference>
<Reference>
<Citation>Heck, M.. (2018) Insect transmission of plant pathogens: a systems biology perspective. mSystems 3, e00168-17.</Citation>
</Reference>
<Reference>
<Citation>Hogenhout, S.A., Ammar, E.D., Whitfield, A.E. and Redinbaugh, M.G. (2008a) Insect vector interactions with persistently transmitted viruses. Annu Rev Phytopathol 46, 327-359.</Citation>
</Reference>
<Reference>
<Citation>Hogenhout, S.A., Oshima, K., Ammar, E.D., Kakizawa, S., Kingdom, H.N. and Namba, S. (2008b) Phytoplasmas: bacteria that manipulate plants and insects. Mol Plant Pathol 9, 403-423.</Citation>
</Reference>
<Reference>
<Citation>IRPCM Phytoplasma/Spiroplasma Working Team (2004) Phytoplasma taxonomy group: 'Candidatus Phytoplasma', a taxon for the wall-less, non-helical prokaryotes that colonize plant phloem and insects. Int J Syst Evol Microbiol 54, 1243-1255.</Citation>
</Reference>
<Reference>
<Citation>Johnson, K.P., Dietrich, C.H., Friedrich, F., Beutel, R.G., Wipfler, B., Peters, R.S., Allen, J.M., Petersen, M. et al. (2018) Phylogenomics and the evolution of hemipteroid insects. Proc Natl Acad Sci 115(50), 12775-12780.</Citation>
</Reference>
<Reference>
<Citation>Jović, J., Cvrković, T., Mitrović, M., Krnjajić, S., Petrović, A., Redinbaugh, M.G., Pratt, R.C., Hogenhout, S.A. et al. (2009) Stolbur phytoplasma transmission to maize by Reptalus panzeri and the disease cycle of maize redness in Serbia. Phytopathology 99(9), 1053-1061.</Citation>
</Reference>
<Reference>
<Citation>Jung, H.Y., Sawayanagi, T., Kakizawa, S., Nishigawa, H., Wei, W., Oshima, K., Miyata, S.I., Ugaki, M. et al. (2003) ‘Candidatus Phytoplasma ziziphi’, a novel phytoplasma taxon associated with jujube witches'-broom disease. Int J Syst Evol Microbiol 53, 1037-1041.</Citation>
</Reference>
<Reference>
<Citation>Kakizawa, S., Oshima, K., Ishii, Y., Hoshi, A., Maejima, K., Jung, H.Y., Yamaji, Y. and Namba, S. (2009) Cloning of immunodominant membrane protein genes of phytoplasmas and their in planta expression. FEMS Microbiol Lett 293, 92-101.</Citation>
</Reference>
<Reference>
<Citation>Konnerth, A., Krczal, G. and Boonrod, K. (2016) Immunodominant membrane proteins of phytoplasmas. Microbiology 162(8), 1267-1273.</Citation>
</Reference>
<Reference>
<Citation>Krogh, A., Larsson, B., Von Heijne, G. and Sonnhammer, E.L. (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305(3), 567-580.</Citation>
</Reference>
<Reference>
<Citation>Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259), 680.</Citation>
</Reference>
<Reference>
<Citation>Lee, I.M., Gundersen-Rindal, D.E., Davis, R.E. and Bartoszyk, I.M. (1998a) Revised classification scheme of phytoplasmas based on RFLP analyses of 16S rRNA and ribosomal protein gene sequences. Int J Syst Evol Microbiol 48, 1153-1169.</Citation>
</Reference>
<Reference>
<Citation>Lee, I.M., Gundersen-Rindal, D.E. and Bertaccini, A. (1998b) Phytoplasma: ecology and genomic diversity. Phytopathology 88(12), 1359-1366.</Citation>
</Reference>
<Reference>
<Citation>Lee, I.M., Davis, R.E. and Gundersen-Rindal, D.E. (2000) Phytoplasma: Phytopathogenic mollicutes. Annu Rev Microbiol 54, 221-255.</Citation>
</Reference>
<Reference>
<Citation>Lee, M., Martini, M., Marcone, C. and Zhu, S.F. (2004) Classification of phytoplasma strains in the elm yellows group (16SrV) and proposal of ‘Candidatus Phytoplasma ulmi’ for the phytoplasma associated with elm yellows. Int J Syst Evol Microbiol 54, 337-347.</Citation>
</Reference>
<Reference>
<Citation>Lessio, F., Picciau, L., Gonella, E., Tota, F., Mandrioli, M. and Alma, A. (2016) The mosaic leafhopper Orientus ishidae: host plants, spatial distribution, infectivity, and transmission of 16SrV phytoplasmas to vines. Bull Insectology 69, 277-289.</Citation>
</Reference>
<Reference>
<Citation>Lopes, J.R., Daugherty, M.P. and Almeida, R.P. (2009) Context-dependent transmission of a generalist plant pathogen: host species and pathogen strain mediate insect vector competence. Entomol Exp Appl 131, 216-224.</Citation>
</Reference>
<Reference>
<Citation>Maixner, M., Reinert, W. and Darimont, H. (2000) Transmission of grapevine yellows by Oncopsis alni (Schrank) (Auchenorrhyncha: Macropsinae). Vitis 39, 83-84.</Citation>
</Reference>
<Reference>
<Citation>Malembic-Maher, S., Salar, P., Filippin, L., Carle, P., Angelini, E. and Foissac, X. (2011) Genetic diversity of European phytoplasmas of the 16SrV taxonomic group and proposal of ‘Candidatus Phytoplasma rubi’. Int J Syst Evol Microbiol 61, 2129-2134.</Citation>
</Reference>
<Reference>
<Citation>Malembic-Maher, S., Desque, D., Khalil, D., Salar, P., Danet, J.L., Bergey, B., Duret, S., Beven, L., et al (2017) When a Palearctic bacterium meets a Nearctic insect vector: genetic and ecological insights into the emergence of the grapevine Flavescence dorée epidemics in Europe. In Book of Abstracts of International Meeting “Future IPM 3.0 towards a sustainable agriculture”. pp. 211-213. Riva del Garda (VR, Italy).</Citation>
</Reference>
<Reference>
<Citation>Marcone, C. (2014) Molecular biology and pathogenicity of phytoplasmas. Ann Appl Biol 165, 199-221.</Citation>
</Reference>
<Reference>
<Citation>Martini, M., Botti, S., Marcone, C., Marzachı, C., Casati, P., Bianco, P.A., Benedetti, R. and Bertaccini, A. (2002) Genetic variability among Flavescence dorée phytoplasmas from different origins in Italy and France. Mol Cell Probes 16, 197-208.</Citation>
</Reference>
<Reference>
<Citation>Marzachí, C. and Bosco, D. (2005) Relative quantification of chrysanthemum yellows (16Sr I) phytoplasma in its plant and insect host using real-time polymerase chain reaction. Mol Biotechnol 30(2), 117-128.</Citation>
</Reference>
<Reference>
<Citation>McLean, D.L. and Kinsey, M.G. (1964) A technique for electronically recording aphid feeding and salivation. Nature 202(4939), 1358.</Citation>
</Reference>
<Reference>
<Citation>Miliordos, D.E., Galetto, L., Ferrari, E., Pegoraro, M., Marzachì, C. and Bosco, D. (2017) Acibenzolar-S-methyl may prevent vector-mediated flavescence dorée phytoplasma transmission, but is ineffective in inducing recovery of infected grapevines. Pest Manag Sci 73, 534-540.</Citation>
</Reference>
<Reference>
<Citation>Morton, A., Davies, D.L., Blomquist, C.L. and Barbara, D.J. (2003) Characterization of homologues of the apple proliferation immunodominant membrane protein gene from three related phytoplasmas. Mol Plant Pathol 4, 109-114.</Citation>
</Reference>
<Reference>
<Citation>Murray, R.E. and Stackebrandt, E. (1995) Taxonomic note: Implementation of the provisional status Candidatus for incompletely described procaryotes. Int J Syst Bacteriol 45, 186-187.</Citation>
</Reference>
<Reference>
<Citation>Nault, L.R. (1997) Arthropod transmission of plant viruses: a new synthesis. Ann Entomol Soc Am 90, 521-541.</Citation>
</Reference>
<Reference>
<Citation>Nielson, M.W. (1968) The leafhopper vectors of phytopathogenic viruses (Homoptera, Cicadellidae): taxonomy, biology, and virus transmission. Technical bulletin no. 1382. Washington, DC: Agricultural Research Service, US Department of Agriculture.</Citation>
</Reference>
<Reference>
<Citation>Pelletier, C., Salar, P., Gillet, J., Cloquemin, G., Very, P., Foissac, X. and Malembic-Maher, S. (2009) Triplex real-time PCR assay for sensitive and simultaneous detection of grapevine phytoplasmas of the 16SrV and 16SrXII-A groups with an endogenous analytical control. Vitis 48, 87-95.</Citation>
</Reference>
<Reference>
<Citation>Perilla-Henao, L.M. and Casteel, C.L. (2016) Vector-borne bacterial plant pathogens: interactions with hemipteran insects and plants. Front Plant Sci 7, 1163.</Citation>
</Reference>
<Reference>
<Citation>Rashidi, M., D'Amelio, R., Galetto, L., Marzachì, C. and Bosco, D. (2014) Interactive transmission of two phytoplasmas by the vector insect. Ann Appl Biol 165, 404-413.</Citation>
</Reference>
<Reference>
<Citation>Rashidi, M., Galetto, L., Bosco, D., Bulgarelli, A., Vallino, M., Veratti, F. and Marzachì, C. (2015) Role of the major antigenic membrane protein in phytoplasma transmission by two insect vector species. BMC Microbiol 15, 193.</Citation>
</Reference>
<Reference>
<Citation>Robert, Y. and Bourdin, D. (2001) Aphid transmission of potato viruses. In Virus and virus-like diseases of potatoes and production of seed-potatoes ed. Loebenstein, G., Berger, P.H., Brunt, A.A. and Lawson, R.H. pp 195-225. Dordrecht: Springer.</Citation>
</Reference>
<Reference>
<Citation>Roggia, C., Caciagli, P., Galetto, L., Pacifico, D., Veratti, F., Bosco, D. and Marzachì, C. (2014) Flavescence dorée phytoplasma titre in field-infected Barbera and Nebbiolo grapevines. Plant Pathol 63, 31-41.</Citation>
</Reference>
<Reference>
<Citation>Rossi, M., Pegoraro, M., Ripamonti, M., Abbà, S., Beal, D., Giraudo, A., Veratti, F., Malembic-Maher, S. et al. (2019) Genetic diversity of Flavescence dorée phytoplasmas at vineyard scale. Appl Environ Microbiol 85, e03123-18.</Citation>
</Reference>
<Reference>
<Citation>Schvester, D., Carle, P. and Moutous, G. (1963) Transmission de la flavescence dorée de la vigne par Scaphoideus littoralis Ball. Annales des Epiphyties 14, 175-198.</Citation>
</Reference>
<Reference>
<Citation>Severin, H. (1945) Evidence of nonspecific transmission of California aster-yellows virus by leafhoppers. Hilgardia 17, 21-59.</Citation>
</Reference>
<Reference>
<Citation>Siampour, M., Galetto, L., Bosco, D., Izadpanah, K. and Marzachì, C. (2011) In vitro interactions between immunodominant membrane protein of lime witches’ broom phytoplasma and leafhopper vector proteins. Bull Insectology 64(Suppl.), S149-S150.</Citation>
</Reference>
<Reference>
<Citation>Siampour, M., Izadpanah, K., Galetto, L., Salehi, M. and Marzachi, C. (2013) Molecular characterization, phylogenetic comparison and serological relationship of the Imp protein of several ‘Candidatus Phytoplasma aurantifolia’strains. Plant Pathol 62, 452-459.</Citation>
</Reference>
<Reference>
<Citation>Sonnhammer, E.L., Von Heijne, G. and Krogh, A. (1998) A hidden Markov model for predicting transmembrane helices in protein sequences. Ismb 6, 175-182.</Citation>
</Reference>
<Reference>
<Citation>Strauss, E. (2009) Phytoplasma research begins to bloom. Science 325, 388-390.</Citation>
</Reference>
<Reference>
<Citation>Suzuki, S., Oshima, K., Kakizawa, S., Arashida, R., Jung, H.Y., Yamaji, Y., Nishigawa, H., Ugaki, M. et al. (2006) Interaction between the membrane protein of a pathogen and insect microfilament complex determines insect-vector specificity. Proc Natl Acad Sci USA 103, 4252-4257.</Citation>
</Reference>
<Reference>
<Citation>Trivellone, V. (2019) An online global database of Hemiptera-Phytoplasma-Plant biological interactions. Biodivers Data J 7, e32910 https://bdj.pensoft.net/article/32910/</Citation>
</Reference>
<Reference>
<Citation>Verbeek, M., Piron, P.G.M., Dullemans, A.M., Cuperus, C. and van der Vlugt, R.A.A. (2010) Determination of aphid transmission efficiencies for N, NTN and Wilga strains of Potato virus Y. Ann Appl Biol 156, 39-49.</Citation>
</Reference>
<Reference>
<Citation>Weintraub, P.G. and Beanland, L. (2006) Insect vectors of phytoplasmas. Annu Rev Entomol 51, 91-111.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Italie</li>
<li>États-Unis</li>
</country>
<region>
<li>Illinois</li>
<li>Piémont</li>
</region>
<settlement>
<li>Turin</li>
</settlement>
</list>
<tree>
<country name="États-Unis">
<region name="Illinois">
<name sortKey="Trivellone, V" sort="Trivellone, V" uniqKey="Trivellone V" first="V" last="Trivellone">V. Trivellone</name>
</region>
</country>
<country name="Italie">
<noRegion>
<name sortKey="Trivellone, V" sort="Trivellone, V" uniqKey="Trivellone V" first="V" last="Trivellone">V. Trivellone</name>
</noRegion>
<name sortKey="Angelini, E" sort="Angelini, E" uniqKey="Angelini E" first="E" last="Angelini">E. Angelini</name>
<name sortKey="Filippin, L" sort="Filippin, L" uniqKey="Filippin L" first="L" last="Filippin">L. Filippin</name>
<name sortKey="Galetto, L" sort="Galetto, L" uniqKey="Galetto L" first="L" last="Galetto">L. Galetto</name>
<name sortKey="Marzachi, C" sort="Marzachi, C" uniqKey="Marzachi C" first="C" last="Marzachí">C. Marzachí</name>
<name sortKey="Ripamonti, M" sort="Ripamonti, M" uniqKey="Ripamonti M" first="M" last="Ripamonti">M. Ripamonti</name>
<name sortKey="Ripamonti, M" sort="Ripamonti, M" uniqKey="Ripamonti M" first="M" last="Ripamonti">M. Ripamonti</name>
<name sortKey="Rossi, M" sort="Rossi, M" uniqKey="Rossi M" first="M" last="Rossi">M. Rossi</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GrapevineDiseaseV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000174 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000174 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GrapevineDiseaseV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31509633
   |texte=   Evidence suggesting interactions between immunodominant membrane protein Imp of Flavescence dorée phytoplasma and protein extracts from distantly related insect species.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31509633" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GrapevineDiseaseV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 16:11:34 2020. Site generation: Wed Nov 18 16:12:50 2020